

Platteville Airport Commission Meeting on Monday, November 10, 2025, 6:00 PM. The meeting was held in person at Platteville Municipal Airport, 5157 Highway 80, Platteville, WI

TL; DR - Platteville Airport Commission (Nov. 10, 2025)

- Meeting called to order at 6:00 PM by Chair Bill Kloster.
- Students from the Dubuque Airport Management Class attended, and Kaleb announced an event for Nov. 19.
- 2025 **Budget:**
 - Discussion focused on hangar rent competitiveness.
 - Kaleb and the Airport Manager conducted marketing research comparing regional and national rates.
 - Current rates (\$142 old, \$97 new) were seen as high vs. nearby airports; break-even point estimated at \$130.
 - Commission agreed to send the budget back to ApexJC for pricing recommendations.
- Flight Training Contract: Reviewed and edited; Nathan to update insurance and attorney revisions.
- Sinkhole **Repair:** Nathan will contact an **engineering firm** for further inspection.
- Snow **Removal Equipment:** Cannot lease or sell to ApexJC due to **BOA rules**; City Manager will be consulted for options.
- December **meeting** moved from the 8th to **Dec. 15**.
- 2026 Officers: All 2025 officers re-elected (Bill-President, Jim-VP/Treasurer, Kaleb-Secretary).
- Treasurer's **Report:** \$18,370.49 in payments approved.
- Fuel **Farm:** Consultant recommended replacement (\$8k-\$12k). Motion approved to purchase a new pump using maintenance funds.
- High School Visit: Successful; physics teacher was satisfied with the experience.
- Santa Fly-In: Confirmed for Dec. 13, 2025 (9 AM-12 PM).
- Meeting adjourned at 7:30 PM.

Meeting Notes:

1.Call to Order

The meeting was called to order at 6:00 PM by Chair William Kloster.

2. Attendance

Members Present: Jim Berglund, William (Bill) Kloster, Lynnette Dornak, Brian Whisenant, Nathan (Airport Manager), and Kaleb Regoli.

Vacancy: One seat.

Guests: Anna, Levi, Brock, Aiden, Duston, and Dawson.

3. Approval of Minutes - October 13, 2025

Motion to approve the October 13, 2025, minutes by Lynnette Dornak, seconded by Brian Whisenant. Motion carried unanimously.

4. Citizens' Comments

- Students from the Airport Management Class attended as part of their coursework.
- On the University side, Kaleb announced, "THE AMERICAN REVOLUTION" Clips screening and Trivia Night at UW-Platteville at Velzy Commons in Ullsvik Hall on November 19th at 6 PM to 7:30 PM. All are welcome to join. No admission fee. Prizes range from gift cards to LEGO.

5. 2025 Budget Approval

The Commission discussed the hangar rent review and regional competitiveness.

Key discussion points included:

- Current hangar rates are similar to nearby airports, but amenities vary.
- Average regional rent is approximately \$116, with Platteville rates \$50-\$100 higher.
- Some commissioners questioned which nearby airports maintain waiting lists and how fuel pricing compares across the region.
- Comparison made between nationwide and tri-state (WI/IA/IL) hangar pricing.
- Bill Kloster noted that Platteville offers more amenities than some nearby airports, while others (like Dubuque) are fully insulated and charge a \$20 utility fee for heated hangars.
- Discussion suggested the break-even point is \$130 per month.
- Commissioners emphasized balancing fairness with competitiveness and agreed the CPI approach (3%) remains reasonable.
- Additional discussion on potential ground restoration or enrolling in the Conservation Reserve Program (CRP) for seeded areas.

Kaleb and the Airport Manager conducted the marketing research that was presented during this discussion.

Action:

The budget will be returned to ApexJC for review and recommendation of ideal hangar pricing. The topic will be revisited in December.

(Marketing materials referenced during the discussion will be attached to the official minutes.)

6. Contract for Flight Training

The Commission reviewed and edited the draft flight training contract.

Action: Nathan will add corrections as requested by the City Attorney and update insurance details before final review.

7. Sinkhole Repair – Action

If attendance requires special accommodation needs, please contact (608)348-9741, ext. 2238

Discussion held regarding the engineering report provided.

Action: Nathan will contact an engineering company to inspect and provide recommendations. (Sinkhole report to be attached to the minutes.)

8. Lease of Snow Removal Equipment

Discussion clarified that the airport cannot lease or sell equipment to ApexJC, as this would conflict with BOA regulations, nor is it necessary to ask Grant County itself.

The Chairman will discuss potential city leasing options with the City Manager.

9. December Meeting Date

The Chairman cannot make the next meeting as scheduled. He requests to move it a week later, as long as everyone is there. No objections.

Motion by Jim Berglund to move the December meeting from the 8th to December 15th, seconded by Lynnette Dornak.

Motion carried unanimously.

10. Election of Officers - 2026

Motion by Jim Berglund to retain current officers from 2025, seconded by Lynnette Dornak.

Approved slate of officers:

- President: William (Bill) Kloster
- Vice President: Jim Berglund
- Secretary: Kaleb Regoli
- Treasurer: Jim Berglund

Motion carried unanimously.

11. Covid Era Credit and City Matters

- The airport webpage is being updated.

12. Treasurer's Report

- No major changes except for updates related to the geotechnical report.

Motion by Kaleb Regoli to approve payment of \$18,370.49 in checks, seconded by Jim Berglund. Motion carried unanimously.

13. Manager's Report

- Electrical: An electrician will inspect the meter.
- **Sinkhole:** Previously discussed.
- Fuel Farm Repairs: A consultant inspected the fuel farm; the current pump/gearbox functions but will need replacement. Estimated costs are \$8,000–\$11,000 for replacement or \$12,000 for a new system. MetCo will provide a quote.
- Motion by Kaleb Regoli to purchase and install a new pump while evaluating the old one for potential repair or sale, seconded by Jim Berglund.
- Funding to come from maintenance funds. Motion carried unanimously.
- ADSB Tracker: Estimated annual cost of \$1,800; deferred for now.
- **6-Bay Hangars:** Required minor repairs.
- Platteville High School Field Trip: The visit was successful, and the physics teacher was satisfied with the experience. Future outreach opportunities are anticipated.
- Santa Fly-In: Scheduled for Saturday, December 13, 2025, from 9:00 AM to 12:00 PM. A flyer is being made along with other marketing.
- **BOA:** A new Bureau representative will be assigned soon.

14. Other Business

- Commissioner Doug Bartlett sends best wishes and reports he is doing well flying in New Zealand.

If attendance requires special accommodation needs, please contact (608)348-9741, ext. 2238

15. Adjournment

Motion to adjourn by Kaleb Regoli, seconded by Jim Berglund. Motion carried unanimously. Meeting adjourned at 7:30 PM.

Author Note 1: Email Kaleb Regoli (regolik@uwplatt.edu) with any concerns or if you'd like to join us next month!

Last Update November 11th, 2025.

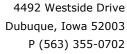
Respectfully submitted,
Kaleb Regoli
Secretary
Platteville Airport Commission

Geophysical Exploration Report Platteville Municipal Airport Fuel Farm Sinkhole Evaluation

5157 State Highway 80 S. Platteville, Wisconsin

October 29, 2025 | Report Number: 33255023

Prepared for: Apex Executive Jet Center PVD, LLC


5157 State Highway 80 S.

Platteville, Wisconsin 53818

Nationwide Terracon.com

- Facilities
- EnvironmentalGeotechnical
- Materials

October 29, 2025

Apex Executive Jet Center PVD, LLC 5157 State Highway 80 S. Platteville, Wisconsin 53818

Attn: Rison Periera

P: 608-348-3582

E: rpereira@apexaerocenter.com

RE: Geophysical Exploration Report

Platteville Municipal Airport Fuel Farm Sinkhole Evaluation

5157 State Highway 80 S. Platteville, Wisconsin

Terracon Report Number 33255023

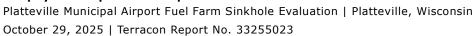
Dear Mr. Periera

We have completed the scope of services for the above-referenced project in general accordance with P33255023 dated July 30, 2025. This report presents the findings and interpretations of the geophysical exploration for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely,

Terracon


Kevin D. Rupp

Group Manager

Kin Rugg

Sara J. Somsky, P.E.

Principal

Table of Contents

Tabl	e of Contents	
Intro	oduction	i
1.0	Site Conditions & Project Description	1
2.0	Geophysical Exploration Methodology	1
3.0	Geophysical Results	2
	3.1 Discussion	2
4.0	Follow-on Recommendations	2
5.0	General Comments	3
6.0	Attachments	5
	6.1 Geophysical Exploration Results	5
	6.2 Exploration and Testing Procedures	c

Platteville Municipal Airport Fuel Farm Sinkhole Evaluation | Platteville, Wisconsin October 29, 2025 | Terracon Report No. 33255023

Introduction

This report presents the results of our geophysical exploration performed for the Platteville Municipal Airport Fuel Farm Sinkhole Evaluation project located at 5157 State Highway 80 S. in Platteville, Wisconsin. The purpose of these services was to provide geophysical information relative to the location of possible voids adjacent to the existing sinkhole, beneath the concrete slab and adjacent green space.

The geophysical exploration Scope of Services for this project included multichannel ground penetrating radar (MCGPR), frequency-domain electromagnetics (FDEM) terrain conductivity, geophysical interpretation, and preparation of this report.

Drawings showing the site and geophysical locations are shown on Exhibit 1 and 2, respectively. More in-depth information on the methods used can be found in the **Exploration and Testing Procedures.**

Platteville Municipal Airport Fuel Farm Sinkhole Evaluation | Platteville, Wisconsin October 29, 2025 | Terracon Report No. 33255023

1.0 Site Conditions & Project Description

The following description of site conditions is derived from our site visit in association with the geophysical survey.

Item	Description
Parcel Information	The property is located at 5157 State Highway 80 in Platteville, Wisconsin. Latitude/Longitude (approximate): 42.6908°, -90.4402° See Exhibit 1.
Current Ground Cover	Grass, asphalt pavement, concrete tank pad
Project Description	A sinkhole was observed near the southeast corner of the fuel farm pad. Reportedly, the sinkhole continues to expand, despite several attempts to fill the sinkhole with soil and gravel. To assist with evaluating the sinkhole, a geophysical exploration was performed to aid in determining the lateral extent of the known sinkhole.

2.0 Geophysical Exploration Methodology

The surface geophysics consisted of:

- 22,000 square feet of frequency domain electromagnetics (FDEM) terrain conductivity with exploration area depicted in the Exhibit 2.
- 22,000 square feet of multichannel ground penetrating radar (MCGPR) with exploration area depicted in Exhibit 2.

We used handheld GPS equipment to locate MCGPR traverses with an estimated horizontal accuracy of ±1 foot. Geophysical data was only collected in clear, accessible areas. Data gaps on the attached geophysical exhibits were the result of obstruction such as fences, bollards, or the fuel farm.

FDEM Terrain Conductivity: Terracon collected data using a Geonics EM31-MK2 frequency domain profiler oriented in the horizontal dipole direction that collected terrain conductivity data with one-direction transect spacings of about 5 feet. Data was processed using Golden Software Surfer to yield a 2D plan view map of the terrain conductivity and magnetic susceptibility data.

MCGPR: Terracon collected data using a towed continuous-wave step frequency system consisting of 16-channels of 450-MHz antenna frequencies oriented in both the horizontal and vertical dipole directions. The data was geo-referenced using a surveygrade GPS antenna mounted to the unit. Data was processed using Geolitix to yield 2D top-down depth slices of the radar data. Based on the methodology and site conditions,

Platteville Municipal Airport Fuel Farm Sinkhole Evaluation | Platteville, Wisconsin October 29, 2025 | Terracon Report No. 33255023

we estimate that the maximum approximate depth of investigation ranged from 3 to 4 feet below the ground surface.

Geophysical Results 3.0

3.1 **Discussion**

A Terracon representative visited the site on August 10, 2025, with geophysical equipment to scan accessible areas of the site. Data was collected in near overlapping one-directional transects across the pavement and grass areas surrounding the fuel farm. The scans were processed to produce an amplitude map of signal responses and were subsequently overlain onto plan images as shown in Exhibits 3 and 4. Electromagnetics can aid in identifying karst features by detecting lateral variations in soil or rock conductivity values. No large variations in conductivity indicative of karst features were observed in the EM results provided in Exhibit 3. The elevated conductivity readings immediately adjacent to the tank pad are consistent with interference with the chain link fence. The anomalous zones within the conductivity map are consistent with that of underground utilities and a nearby reinforced concrete slab east of the fuel farm. Due to the higher signal response in these both of these areas, EM methods may not be able to detect sinkhole features.

The GPR results from this exploration are provided on Exhibit 4. When the radar signal encounters an air-filled void, the signal is unable to fully penetrate through the void and is reflected back to the antenna. This creates a ringing or duplication of the radar signal in the GPR profile as outlined in the GPR profile provided in Exhibit 4. The areas outlined in pink on the plan view image shown areas where these reflection zones were observed. Based on the GPR results, no evidence of the known sinkhole extending further south or east was observed. Due to obstructions, we were unable to determine if the observed sinkhole extends laterally north under the fuel farm. A small anomaly was detected at the southwest corner of the fuel farm and may warrant further investigation via direct exploration. Several isolated areas where apparent voids were observed beneath the pavement were also detected to the northeast and south of the fuel farm. Although these isolated areas are not connected to the observed sinkhole, we recommend direct exploration to confirm the presence of a void.

4.0 Follow-on Recommendations

Grouting in karst is a frequent tool utilized for numerous applications including but not limited to filling voids, capping off the bedrock, improving the soil/rock conditions, and bypassing karst compromised regions. Grouting styles are generally segregated into either gravity fed permeation grouting styles or a variety of pressure grouting techniques. It is common in karst environments to utilize a hybrid of these techniques, which are dependent on the specific karst features and the type of foundation design

Platteville Municipal Airport Fuel Farm Sinkhole Evaluation | Platteville, Wisconsin October 29, 2025 | Terracon Report No. 33255023

needed for the infrastructure. Based on these factors, grouting strategies may include filling, plugging, covering, bypassing, and bridging in and around karst features or soils and bedrock compromised by karst activities. The need for grouting is based on a variety of factors including the morphology of the underlying karst bedrock, the thickness of soil overburden, and the strength of the soil and its ability to support loads. The method of grouting will be provided by a specialty contractor who is responsible for developing both the design and the implementation procedure.

Based on the surficial observations and the geophysical investigation, it is apparent that a sinkhole is present beneath the existing structure and is responsible for the collapse. The geophysical results indicate that the karst feature does not extend beyond and away from the structure but is instead limited beneath the foundation. There are other geophysical anomalies consistent with karst development that were flagged further away from the structure but are unlikely to be related to the current sinkhole issue. Due to the inaccessibility of the karst feature responsible for the collapse, we recommend that the grouting remediation method be utilized to plug the subsurface throat and restabilize the ground. In addition, we recommend changing the stormwater pathway that was shown to flow overtop the impermeable surface and directly into the sinkhole. Both the grouting remediation and removal of surface water infiltration at that location will improve the subsurface karst conditions.

5.0 General Comments

As with any geophysical method, the processes rely on measured responses to indicate physical conditions in the field. Responses can be affected by on-site conditions beyond the control of the operator, such as, but not limited to, anthropogenic features (e.g., utilities, buried metallic objects, etc.), soil/material types, soil/material moisture, and/or groundwater table depth. Interpretation is based on known factors combined with the experience of the operator and the geophysicist evaluating the results. Detailed descriptions of the limitations specific to each geophysical method are provided in Section 6.2.

Sampling and testing of select areas using subsurface exploration methods is recommended to correlate the results from the geophysical surveys. As with all geophysical methods, the geophysical results provide information regarding subsurface conditions at the site but should not be considered absolute. We cannot be responsible for the interpretation of geophysical results by others.

Our analysis and opinions are based upon our understanding of the project, the geophysical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration locations or due to the modifying effects of construction (if applicable) or weather. If variations appear, we can provide further evaluation and supplemental recommendations via change order.

Our Scope of Services does not include either specifically or by implication any geotechnical, environmental, or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the client is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geophysical practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, cost estimating, including excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we are retained to review the changes and either verify or modify our conclusions in writing.

Platteville Municipal Airport Fuel Farm Sinkhole Evaluation | Platteville, Wisconsin October 29, 2025 | Terracon Report No. 33255023

6.0 Attachments

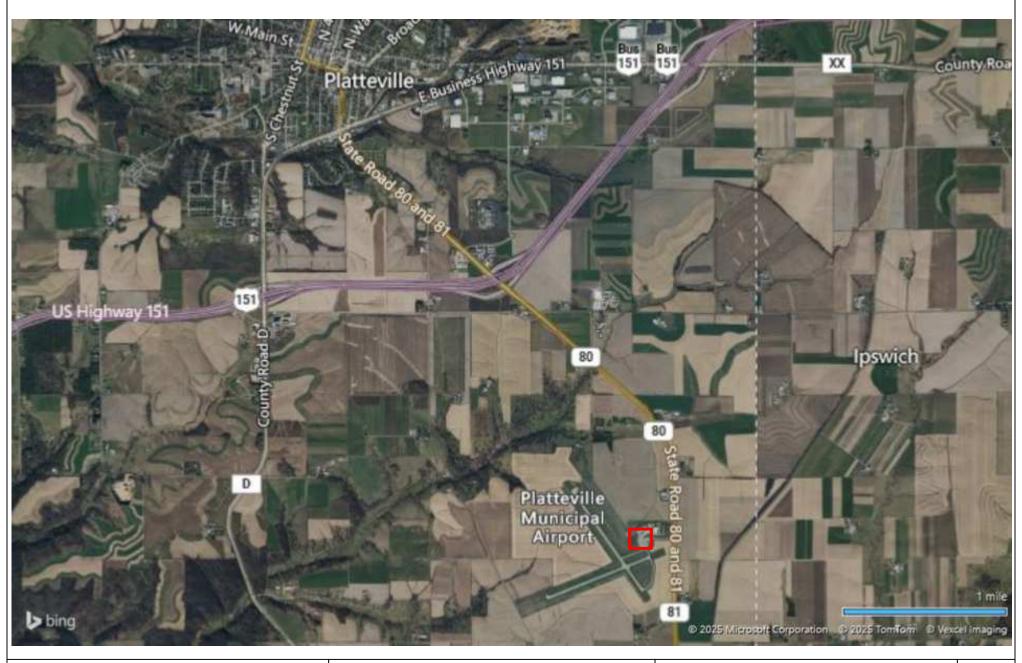

6.1 **Geophysical Exploration Results**

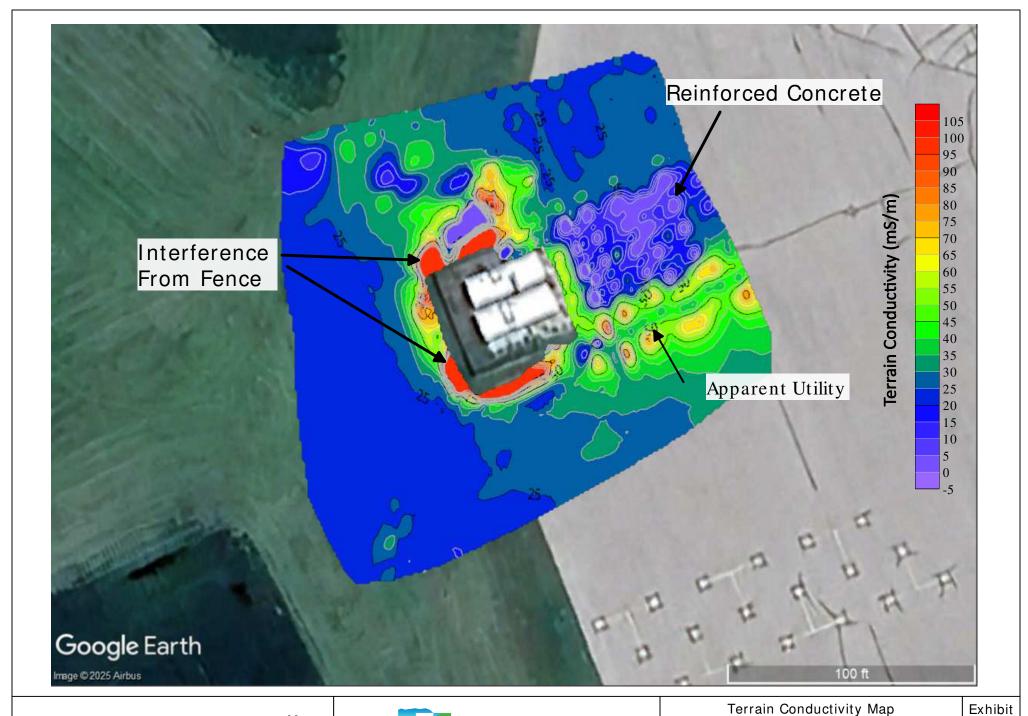
Exhibit 1 – Site Location Map

Exhibit 2 – Geophysical Exploration Plan

Exhibit 3 – Terrain Conductivity Map

Exhibit 4 - GPR Results

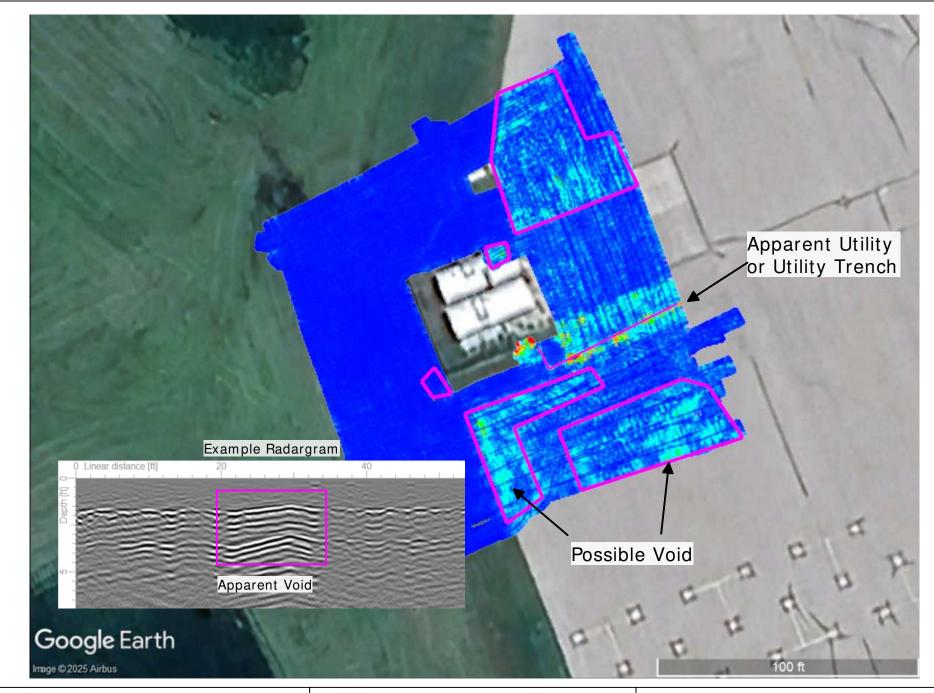
Approximate Fuel Farm Location



erracon

Date: 10/29/2025 | Project Number: 33255023

Site Location Map	Exhibit
Platteville Municipal Airport Fuel Farm Sinkhole Evaluation Platteville, Wisconsin	1



erracon	Platteville Municipal Airport Fuel Farm		
	Sinkhole Evaluation		
Date: 10/29/2025 Project Number: 33255023	Platteville, Wisconsin		

GPR Anomalies

Terracon

Date: 10/29/2025	Project Number:	33255023
- a.c		00-000-0

GPR Results	Exhibit
Platteville Municipal Airport Fuel Farm	
Sinkhole Evaluation	4

Platteville, Wisconsin

Platteville Municipal Airport Fuel Farm Sinkhole Evaluation | Platteville, Wisconsin October 29, 2025 | Terracon Report No. 33255023

6.2 Exploration and Testing Procedures

Terracon utilzed the following test methods in our investigation.

Frequency Domain Electromagnetics (FDEM) Terrain Conductivity (TC) Method (ASTM D6639)

The terrain conductivity (TC) method is a means of measuring the electrical conductivity of the subsurface through electromagnetic induction. With this method a transmitter coil (Tx) placed on the surface is energized with an alternating current at an audio frequency and a receiver coil (Rx) is positioned a short distance away.

The time-varying magnetic field arising from the alternating current in the transmitter coil induces very small eddy currents in the earth. These currents generate a secondary magnetic field (H_s) which is sensed, together with the primary field (H_p) by the receiver coil. In general, the secondary field is a complicated function of the inter-coil spacing (s), the operating frequency (f) and the ground conductivity (σ). However, under certain constraints (operating at low induction numbers) the secondary field becomes a very simple function of these variables. These constraints are incorporated in the design of TC instruments. These instruments measure the ratio of H_s to H_p which is linearly proportional to the apparent conductivity (σ _a), as defined by the following equation:

$$\sigma_{\rm a} = \left(\frac{4}{\omega \mu s^2}\right) \left(\frac{Hs}{Hp}\right)$$

Where $\omega = 2\pi f$

 μ = permeability of free space

The term "apparent" is used because the value represents the conductivity of a volume of material rather than a discrete layer. Hence, the terrain conductivity (TC) is presented in units of milli-Siemens per meter (mS/m). TC is a complex function that comprises both quadrature and in-phase components. In the absence of buried metallic objects TC and the quadrature component are essentially one in the same. However, in the presence of buried metal the in-phase component becomes a significant part of the signal and is often used on its own to map buried metal objects.

Limitations: The detection of buried objects using TC is dependent upon the size, composition, and construction of the object, as well as its depth. If an object is too small, not conductive enough or too deep, it may not be detectable. Items detectable with the TC include pipelines, underground storage tanks, drums and debris that are electrically conductive. Also, items that are within the sphere of influence of shallower buried targets or surface objects may be masked by the fields given off by those objects and thus not detected.

Platteville Municipal Airport Fuel Farm Sinkhole Evaluation | Platteville, Wisconsin October 29, 2025 | Terracon Report No. 33255023

Ground Penetrating Radar (GPR) Surveys (ASTM D6432)

Ground penetrating radar (GPR) is a method that provides a continuous, high resolution graphical cross-section depicting variations in the electrical properties of the shallow subsurface. The method involves repeatedly radiating an electromagnetic pulse (radar signal) into the ground from a transducer (antenna) as it is moved along a traverse. Radar signals reflected by subsurface objects or horizons are detected by an antenna (often the same one used to generate the signal) and sent to a control unit for processing. The control unit then converts the varying amplitude of the reflected radar signals as a function of time into a cross-sectional image showing signal amplitude as a function of distance and depth.

GPR response is governed by two electrical properties; electrical conductivity (σ) and dielectric permittivity (ε) , also referred to as dielectric constant. Electrical conductivity is the ability of a material to conduct a charge when an electromagnetic field is applied. Dielectric permittivity is the ability of a material to hold a charge when an electromagnetic field is applied. Electrical conductivity governs how far radar signals can propagate through the subsurface before becoming undetectable. The higher the conductivity, the faster the signal attenuates. Consequently, conductivity also affects the strength of radar signals that are reflected from subsurface boundaries. Contrasts in electrical permittivity affect how much of the radar signal is reflected at subsurface boundaries representing a change in permittivity. The greater the contrast, the more energy that is reflected.

Most earthen materials (soil and rock) and even artificial materials (e.g. concrete) have relatively low dielectric permittivity and, therefore, are relatively transparent to electromagnetic energy. This means that only a portion of the radar signal incident upon a subsurface boundary is reflected back to the surface. On the other hand, when the radar signal encounters an object composed of a material that has very high permittivity, such as buried metal, most of the incident energy is reflected.

Limitations: The ability to detect subsurface targets with GPR is based on contrasting electrical properties (dielectric) and is dependent on specific site conditions. These conditions include depth of burial, the size (or diameter), the physical condition, the surrounding soils and the surface conditions over the survey target. Typically, the depth of detection will be reduced as the clay and/or moisture content in the subsurface increases (increasing ground conductivity). Further, the estimated depth of a given target is dependent on the assumed dielectric constant of the surrounding soils. Unless a target of known depth is available for calibration of the GPR to the site-specific conditions, the soil dielectric is typically estimated based on the soil type and moisture conditions.

compatables

Airport	Old T-Hangar		Newer T-Hangar		T-Hangar Heated		T-Hangar with end storage2		Box Hangar-Open	
KDBQ	\$	130.00	\$	150.00	150-265		\$	265.00	N/A	
KMXO	N/A		\$	125.00	N/A		N/A		\$	100.00
KOQW	N/A		\$	103.00	N/A		N/A		N/A	
KLNR	N/A		\$	175.00	N/A		N/A		N/A	
KPDC	N/A		N/A		N/A		N/A		\$	100.00
KCWI	\$	103.00	\$	145.00	N/A	STANCE FOR STANCE	N/A		N/A	100.00
KEFT	N/A		\$	185.00	N/A		N/A	3.5	N/A	
KFEP	N/A		\$	165.00	N/A		N/A		N/A	
93C	N/A		\$	156.25		87.50	N/A		N/A	
KSFY	No Data		No Data		No Data	.07.00	No Data		March 1994 Colonia St. Colonia St.	
KMRJ	No Data		No Data		No Data		No Data		No Data	
73C	No Data		No Data		No Data				No Data	
Average	\$	116.50	\$	150.53		97 E0	No Data		No Data	
The second second second				200.00	Ψ	.87.50			\$	100.00

\$125

1 "

11

Airport	Old T-	Hangar	Newer T-Hangar			Box Hangar-Open
KPVB	\$	175.00	\$	250.00	\$	300.00

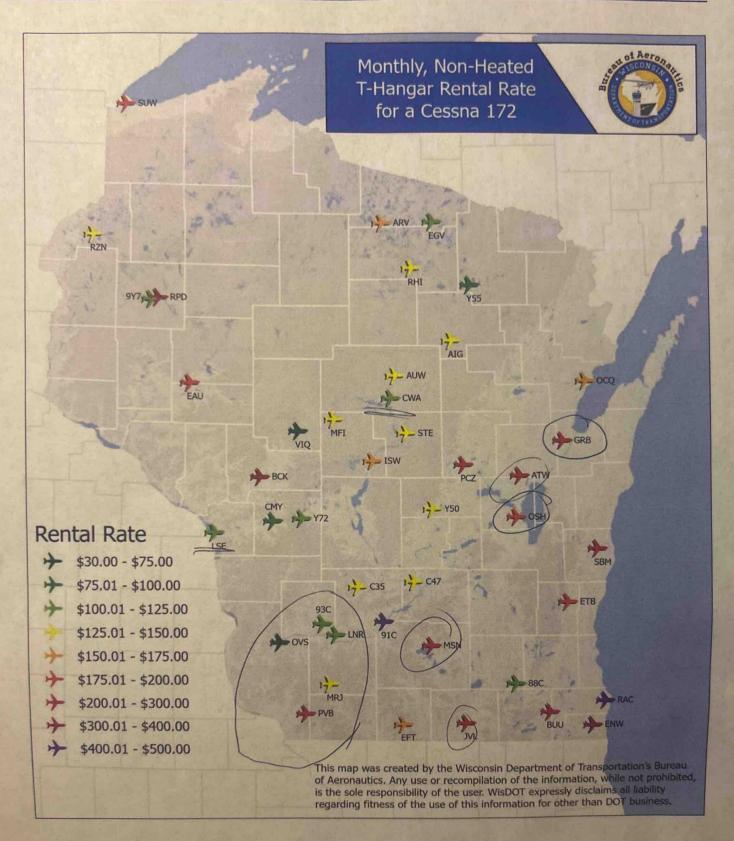


Figure 9